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Abstract
GNSS collaborative positioning receives great attention because of the rapid development of vehicle-to-vehicle communi-
cation. Its current bottleneck is in urban areas. During the relative positioning using GNSS double-difference pseudorange 
measurements, the multipath effects and non-line-of-sight (NLOS) reception cannot be eliminated, or even worse, both 
might be aggregated. It has been widely demonstrated that 3D map aided GNSS can mitigate or even correct the multipath 
and NLOS effects. We, therefore, investigate the potential of aiding GNSS collaborative positioning using 3D city models. 
These models are used in two phases. First, the building models are used to exclude NLOS measurements at a single receiver 
using GNSS shadow matching positioning. Second, the models are used together with broadcast ephemeris data to generate 
a predicted GNSS positioning error map. Based on this error map, each receiver will be identified as experiencing healthy 
or degraded conditions. The receiver experiencing degraded condition will be improved by the receiver experiencing the 
healthy condition, hence the aspect of collaborative positioning. Five low-cost GNSS receivers are used to conduct experi-
ments. According to the result, the positioning accuracy of the receiver in a deep urban area improves from 46.2 to 14.4 m.

Keywords Collaborative positioning · 3D building models · Urban canyon · Consistency check · NLOS

Introduction

One of the bottlenecks of intelligent transportation system 
(ITS) is the positioning accuracy of vehicles. To improve 
the accuracy of positioning, an inertial navigation system 
(INS) is always integrated with GNSS (Groves 2013). Due 
to progress in computing capability, LiDAR is employed 
for simultaneous localization and mapping (SLAM) (Levin-
son et al. 2007). Unlike other sensors measuring the relative 
position, the GNSS also provides absolute positions without 
accumulated error. Therefore, the GNSS solution is still a 
key technology to provide the positioning service for autono-
mous driving (Kamijo et al. 2015).

Due to the expected maturity of vehicle-to-vehicle (V2V) 
communications in the near future (Qiu et al. 2015), the posi-
tioning via V2V cooperation becomes possible. By making 
use of numerous measurements from surrounding vehicular, 

the positioning accuracy of the target vehicle can be much 
improved (de Ponte Müller 2017). The collaborative posi-
tioning can be mainly divided into transponder-based and 
GNSS-based relative positioning (Elazab et al. 2016; Liu 
et al. 2017). By combining various types of transponder-
based measurements (Xu et al. 2015), the positioning accu-
racy can be optimized through a weighted solution (Elazab 
et al. 2016), least-squares estimation (Van Nguyen et al. 
2015) or the application of a probability density filter (Zhang 
et al. 2014). However, the transponder-based approach suf-
fers from signal reflection or blockage and unsynchronized 
clock, making practical implementation difficult (Blumen-
stein et al. 2015). The GNSS-based approaches directly 
exchange the GNSS data between vehicles to improve the 
positioning performance (Lassoued et al. 2017), and most 
of them use the double-difference (DD) method (Alam et al. 
2013). The idea behind the DD technique is to eliminate 
common pseudorange error between two GNSS receivers, 
including ionospheric, tropospheric and satellite clock/orbit 
errors. As mentioned by Liu et al. (2014), the DD-based col-
laborative positioning is still difficult in urban areas due to 
multipath and NLOS errors.
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In urban canyons, the GNSS signal can be reflected by a 
building surface, experiencing an extra traveling distance. 
The signal multipath and NLOS effects are introducing 
GNSS positioning errors that can in extreme cases exceed 
100 m in urban areas (Hsu 2018). One of the feasible solu-
tions is to apply fault detection and exclusion (FDE) for the 
multipath or NLOS affected signals. A GNSS consistency 
check has been proposed to select consistent measurements 
for positioning based on pseudorange residuals (Groves 
and Jiang 2013). Similarly, a forward–backward receiver 
autonomous integrity monitoring (RAIM) technique has 
been developed to improve the performance of GNSS in 
the urban environment (Angrisano et al. 2012). The random 
sample consensus (RANSAC) method is further employed to 
improve the performance of RAIM in case of multiple outli-
ers (Castaldo et al. 2014). Due to the arrival of multi-GNSS, 
the availability of GNSS is enhanced even in a dense urban 
area, which further improves its positioning performance 
(Hsu et al. 2017). However, multi-GNSS could also increase 
the number of outliers (multipath or NLOS), rendering FDE 
unable to obtain satisfactory performance in dense urban 
area. Because multipath and NLOS effects are produced by 
buildings, a 3D building model can be employed to evaluate 
and mitigate such effects (Tiberius and Verbree 2004). The 
shadow matching (SDM) is a widely used 3DMA GNSS 
positioning method (Groves 2011). Instead of using pseudor-
ange, it uses satellite visibility as measurement to estimate 
the receiver position. Satellite visibility is defined by the 
blockage of LOS signal transmission. If a satellite is not 
tracked by a receiver, it is very likely the signal is blocked 
by the buildings and vice versa. The SDM determines the 
receiver position by matching the satellite visibility com-
puted from receiver measurements with the visibility for 
hypothesized positions using 3D models. If the computed 
visibility matched the visibility of a hypothesized position, 
then the receiver is very likely located at that hypothesized 
position. The performance assessment and of the 3DMA 
GNSS and the effect of mapping quality are summarized in 
Adjrad et al. (2018) and Groves and Adjrad (2018).

It is interesting to note the 3DMA GNSS and GNSS-
based collaborative positioning are complementary; the for-
mer one can greatly mitigate multipath and NLOS effects, 
while it is still suffering from various other factors to achieve 
highly accurate positioning. The latter one can eliminate the 
systematic errors by sharing raw GNSS data between vehi-
cles, but it is limited to using multipath-free measurements. 
In addition, the receiver will be identified as experiencing 
healthy or degraded conditions based on 3DMA GNSS 
(Bradbury et al. 2007; Zhang and Hsu 2018), which provides 
an appropriate receiver selection for collaborative position-
ing. Accordingly, we propose GNSS-based collaborative 
positioning using 3D building models. The 3DMA GNSS 
algorithm is employed for preliminary NLOS detection and 

exclusion, mitigating the uncorrelated errors during DD. The 
3DMA GNSS is further used to select reliable receivers for 
collaborative positioning. Finally, the collaborative position-
ing solution is integrated with the 3DMA GNSS solution 
based on their complementary characteristics, improving the 
positioning accuracy in dense urban areas.

Overview of the proposed 3DMA 
GNSS‑based collaborative positioning

The flowchart of the proposed collaborative positioning 
algorithm is shown in Fig. 1. At the single receiver level, the 
received GNSS measurements will be used with the GNSS 
shadow matching (SDM) based on the 3D building models 
(Wang et al. 2013), to obtain an improved initial position-
ing solution. Based on the SDM solution, satellite visibility 
can be identified using the skymask (skyplot with build-
ing boundaries). Therefore, the identification and exclu-
sion of the NLOS measurements can be conducted. Then, 
the remaining GNSS measurements will be subjected to a 
consistency check. After the two exclusions, the surviving 
measurements are considered to be clean GNSS measure-
ments. The surviving pseudorange measurements will be 
double-differenced to obtain the relative positions between 
receivers. Meanwhile, the second layer of consistency check 
will be employed during the double-difference estimation, 
ensuring further the consistency of measurements (Zhang 
et al. 2018).

Among all measurements, an inaccurate measurement 
may lead to a large error during position computation. 
Therefore, it is important to classify whether the measure-
ment is reliable. Due to the multipath and NLOS effects, it is 
difficult to evaluate the positioning performance mainly rely-
ing on measurements (Hsu 2017). Based on the 3D building 
model in the vicinity of receiver and the broadcast ephem-
eris, the multipath and NLOS delay of GNSS pseudorange 
measurement can be predicted using a ray-tracing algorithm 
(Hsu et al. 2016; Ziedan 2017). Simplifications have also 
been studied for 3DMA GNSS pseudorange simulation to 
lower the computation load for real-time implementation 
(Ng et al. 2019). Then, a positioning error map for predict-
ing each location’s GNSS error can be constructed (Zhang 
and Hsu 2018) and employed to predict each receiver’s 
positioning performance based on its error estimate. Based 
on the predicted performance, the positioning solutions are 
obtained by applying the proposed collaborative positioning 
algorithm (which is a weighted average approach) to their 
absolute and relative positioning solutions.
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GNSS shadow matching algorithm

Conventional least-squares estimation suffers from absorb-
ing unmodeled multipath and NLOS effect in the urban 
area. Hence, we use an advanced 3DMA GNSS position-
ing, also referred to as shadow matching (SDM), to pro-
vide the absolute position of a single receiver. Here, a 
basic SDM algorithm is employed (Wang et al. 2015) to 
determine the receiver location by searching for a candi-
date position having a satellite visibility that is the most 
similar to the actual measured satellite visibility. The sat-
ellite visibility is categorized into LOS and NLOS; the 
LOS signal transmission is not blocked and the NLOS 

signal blocked by obstacles, respectively. The actual meas-
ured satellite visibility is usually determined by C/N0. If it 
is weaker than a certain threshold, the sight is NLOS, and 
otherwise, it is LOS. For the satellite visibility prediction 
at each candidate position, the surrounding 3D building 
model from Google Earth (Fig. 2 left) can be plotted in 
a polar coordinate overhead with azimuth and elevation, 
generating the skymask (right panel). Based on the sky-
mask, the satellite with an elevation below the building 
boundaries is considered as NLOS. Otherwise, it is LOS. 
For the measured satellite visibility, since the reflected 
NLOS signal may be received in the urban area, only the 
measurement with C/N0 over 40 dB-Hz will be regarded as 
LOS measurement, indicating a strong signal (Wang et al. 

Fig. 1  Flowchart of the pro-
posed 3DMA collaborative 
positioning algorithm

Fig. 2  Demonstration of the 
skymask based on the 3D 
building model corresponding 
to different locations. The sky-
mask (right) indicates the sky 
view with the building blockage 
(gray area) projected by the cor-
responding building models on 
Google Earth (left)
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2013). After obtaining the predicted satellite visibility for 
different candidate locations and having the satellite vis-
ibility estimated from actual measurements, the receiver 
location is determined by finding a candidate position with 
a skymask-predicted satellite visibility that is the most 
similar to the measured satellite visibility. Figure 3 dem-
onstrates the match score with color for each candidate 
position; the higher score indicates the candidate position 
has a better match with the computed visibility from the 
measurements, which means the receiver has a higher pos-
sibility of being located at this candidate position. Finally, 
the SDM positioning solution is estimated by the weighted 
average of all predicted locations.

Identification and exclusion of NLOS 
measurement

NLOS exclusion based only on C/N0 is usually not reli-
able, since the reflected signal could possibly have a C/N0 
larger than the LOS measurement. A straightforward 
NLOS exclusion approach is to further use the 3D building 
model and the satellite positions to identify which satel-
lite is blocked by buildings. Since the receiver location is 
unknown, a feasible approach is to generate the skymask 
based on a relatively accurate positioning solution. Inter-
estingly, the GNSS SDM gives good positioning perfor-
mance in the across-street direction (Wang et al. 2015), as 
shown by the blue dot in Fig. 4. Theoretically, its error in 
along-street direction may only slightly affect the NLOS 
identification based on the skymask. The skymasks, the 
associated NLOS/LOS identification results for true loca-
tion and the LS and SDM solutions are shown in Fig. 4. 
The true skymask of the receiver identifies that satellites 5, 
9, 12, 13 are blocked by buildings. The incorrect LS solu-
tion lays on the wrong side with different skymask, result-
ing in erroneous NLOS identification. The SDM solution 
always falls on the correct side of the streets, which makes 
its estimated skymask similar to the truth even through 
having a large positioning error in along-street direction.

After obtaining the positioning solution from SDM, 
the corresponding skymask is generated to classify NLOS 
from all GNSS measurements, using

For the ith satellite SV, azi and ele denote the azimuth 
and elevation angles of the satellite, respectively. The sat-
ellites with an elevation angle below the skymask eleva-
tion angle on the same satellite azimuth angle are iden-
tified as NLOS satellite. Rather than only based on the 
C/N0 of the measurements, the NLOS effect can be greatly 
mitigated by the proposed 3DMA NLOS exclusion.

(1)SVNLOS =
{
SV ∈ SVi|elei < eleskymask

(
azii

)}

SC
O
R
E

Fig. 3  Distribution of match score between the measured satellite 
visibility and predicted satellite visibility of different candidate posi-
tions. The color indicates the similarity score for each candidate

Fig. 4  Illustration of NLOS/
LOS identification result using 
the skymasks generated based 
on ground-truth location, 
least-squares solution (LS) 
and shadow matching solution 
(SDM). The blue area on the 
map indicates buildings. The 
red and green markers on the 
skymask denote the NLOS and 
LOS signals, respectively
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Relative positioning algorithm

By using GNSS LOS measurements from different receiv-
ers, the relative position between receivers can be esti-
mated using double-differencing. However, the multipath 
and NLOS error may increase during DD, which requires 
it to be mitigated beforehand. Here, after applying the 
3DMA NLOS exclusion, a double-layer consistency check 
algorithm (Zhang et al. 2018) is further employed with DD 
to mitigate the multipath and NLOS errors.

First layer of consistency check on single point 
positioning

The surviving pseudorange measurements having passed 
the 3DMA exclusion will be applied to an equal weighted 
least-squares estimation as follows:

where � and �0 are the pseudorange measurements and pre-
dictions, respectively. � denotes the geometry matrix of sat-
ellites. �̂ and �0 indicates the estimated and predicted state 
vectors, respectively, including position and receiver clock 
bias. The pseudorange residual �̂LS corresponding to each 
measurement can be calculated by:

Then, the measurement consistency can be evaluated by 
the sum of square error SSELS , using

A small value of SSELS indicates the measurements 
are consistent. A threshold is determined by Chi-square 
test with 10−5 probability of false alarm to guarantee the 
measurements are consistent enough (Blanch et al. 2015). 
A small probability of false alarm is used to ensure the 
healthy measurements are less unlikely to be mistakenly 
excluded. If the SSELS is over the threshold, the measure-
ments will be excluded one by one and the corresponding 
SSELS recalculated. The subset of measurements with low-
est SSELS is selected as the consistent measurements. By 
repeating the exclusion process, the inconsistent measure-
ment will be excluded one by one until the SSELS is below 
the threshold. The survived measurements are considered 
to be consistent enough for positioning (Hsu et al. 2017).

(2)�̂ = �0 +
(
�T�

)−1
�T

(
� − �0

)

(3)�̂LS = � −� ⋅ �̂

(4)SSELS = �̂
T

LS
⋅ �̂LS

Second layer of consistency check on relative 
positioning

By sharing the survived measurements, the DD technique 
is used for relative positioning between receivers. For the 
ith and jth measurement both received by receivers n and 
m, the double difference of the shared measurement Di,j

n,m 
is derived as following:

where e⃗ denotes the unit LOS vector, Δ �⃗�n,m denotes the rela-
tive position vector between receivers n and m, �i

n
 indicates 

the uncommon error from the ith GNSS measurement with 
regarding to the receiver n. The DD (5) does not cancel the 
multipath and NLOS errors, or even worse, the error may be 
aggregated. By conducting the double difference between a 
reference satellite and other satellites for the receivers n and 
m, the relative positioning solution can be derived using:

where E is the geometry matrix. �n,m is the DD measure-
ments vector. Hence, the relative positioning solution can 
be obtained.

The second layer of consistency check, which is similar 
to the first layer but pertains to the double differences, is 
employed to further mitigate uncorrelated errors such as 
multipath and NLOS. After estimating the relative position 
Δ �⃗� from DD, the measurement residual �̂DD and the cor-
responding sum of square error SSEDD can be calculated by

Again, if the SSEDD is over the Chi-square test thresh-
old, the DD measurement will be excluded one by one 
until finding a measurement subset with a SSEDD below the 
threshold, which are consistent enough for final double-
differencing. Finally, the improved relative positioning 
solution between different receivers can be obtained by 
the proposed DD method.

3DMA GNSS collaborative positioning

In general, GNSS-based collaborative positioning, the 
absolute and relative positions from available receivers 
are all combined to optimize the final positioning solu-
tion. However, the multipath and NLOS reception will 
cause severe errors for the receiver operating in deep urban 

(5)Di,j
n,m

=
(
�⃗ei − �⃗ej

)
⋅ Δ �⃗�n,m +

[(
𝜀
i
n
− 𝜀

i
m

)
−
(
𝜀
j
n
− 𝜀

j
m

)]

(6)Δ �⃗�n,m =
(
�T�

)−1
�T�n,m

(7)��DD = � − � ⋅ �⃗�

(8)SSEDD = �̂
T

DD
⋅ �̂DD
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canyons, degrading the overall collaborative positioning 
performance. Therefore, it is necessary to identify the 
positioning performance of each receiver, selecting the 
receiver with healthy GNSS signal reception to aid the one 
with degraded GNSS signal reception. Here, a GNSS posi-
tioning error map from ray-tracing simulation is used to 
predict the positioning performance of each receiver. The 
healthy receivers are selected to aid the degraded receiv-
ers with two different collaborative positioning methods: 
anchor-based method (Method 1) and complementary inte-
gration method (Method 2). The flowchart of the proposed 
collaborative positioning is shown in Fig. 5.

First, the 3D building models and ephemeris are applied 
with the ray-tracing algorithm, simulating the GNSS range 
measurements including reflections. Then, the position-
ing error of a specific location can be predicted with the 
conventional least square solution from simulated meas-
urements. The positioning error of each location can be 
constructed into a positioning error map (Zhang and Hsu 
2018), as shown in Fig. 6.

Based on the SDM solution of each receiver, the corre-
sponding GNSS positioning error can be predicted by the 
positioning error map. The positioning error of neighbor-
ing locations within a range of 10 m is selected to calculate 
the predicted positioning error of the receiver. Considering 
the positioning accuracy of commercial GNSS receiver, 
the receiver with positioning error less than 5 m is classi-
fied as a healthy receiver, otherwise, a degraded receiver.

Method 1

The positioning solution estimated by LS or SDM of the 
degraded receiver still includes large errors, which are diffi-
cult to be reduced by its own measurements. Since the healthy 
receivers contain enough LOS measurements, both the abso-
lute and relative positioning solutions achieve better accuracy 
compared with that of the degraded receiver. It can use the 
positioning solutions of the healthy receiver to estimate the 

Fig. 5  Flowchart of the pro-
posed 3DMA GNSS-based col-
laborative positioning algorithm

Fig. 6  Demonstration of the predicted positioning error map using 
the ray-tracing algorithm and 3D building models. The color bar 
denotes the positioning error in the unit of meter
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position of the degraded receiver. Therefore, the position of 
the degraded receiver can be derived as follows:

where x denotes the position of the receiver, the subscript 
M1 denotes the estimated positioning solution from Method 
1. �SDM,healthy denotes the SDM solution of the healthy 
receiver. Δ�⃗DD,healthy−degraded denotes the relative position-
ing vector between healthy and degraded receiver obtained 
by the proposed DD method. Using the healthy receiver as 
an anchor, the position of the degraded receiver can be deter-
mined with better accuracy.

Method 2

For Method 2, the positioning result of the degraded receiver 
from Method 1 is further integrated with the absolute position-
ing solution of degraded receiver estimated by SDM. The final 
position can be calculated as follows:

(9)�M1,degraded = �SDM,healthy + Δ�⃗DD,healthy−degraded

(10)�M2,degraded =
1

2

(
�M1,degraded + �SDM,degraded

)

where x with the subscript of M2 indicates the final solu-
tion estimated by Method 2 of the proposed algorithm. As 
shown in Fig. 7, the positioning error distribution of Method 
1 and SDM solutions is complementary. The SDM solution 
is known for its performance in the across-street direction. 
Method 1 is greatly based on the relative positioning using 
the common LOS measurements between two receivers. In 
the case of urban canyon, the common satellites are very 
likely visible in the along-street direction. Although an 
uncertainty-based weighted averaging could better integrate 
the two algorithms, the SDM determines the position by a 
candidate-searching method, which is hard to evaluate in 
terms of positioning uncertainty. Therefore, equal weight 
averaging is employed for simplicity. By integrating the 
solutions of Method 1 and SDM, the final positioning accu-
racy can be significantly enhanced.

Experiment setup and result

To verify the proposed 3DMA GNSS-based collaborative 
positioning algorithm, a static experiment is designed as 
shown in Fig. 8 (top). Five locations are selected to repre-
sent 5 users in different environments. For each location, 
the u-blox M8T is used to collect 10 min of GPS and GLO-
NASS measurements. Similarly, a dynamic experiment is 
designed as Fig. 8 (bottom) to verify the performance under 
a vehicle-like environment, where each receiver is carried by 
a walking pedestrian. For the dynamic test, Receiver 1 and 
Receiver 2 are in the open-sky environment, while Receiver 
3 and Receiver 4 are in the urban area. Receiver 5 is located 
on a narrow street with tall buildings on both sides, which is 
a harsh environment for positioning. The recorded measure-
ments are post-processed by the proposed algorithm.

Receiver performance classification during the static 
test

Based on the predicted GNSS positioning error map from 
ray-tracing simulation and SDM solutions, the positioning 
performance of each receiver can be predicted. The pre-
dicted positioning error distribution of each receiver is com-
pared with its real-time least-squares estimation in Fig. 9. 
The corresponding mean errors and classification results are 
shown in Table 1.

Comparing the positioning error between the error map 
(black line) and LS (cyan line) in Fig. 9, the predicted error 
of each receiver is similar to the real positioning error 
from LS, although the deviation of the true positioning 
error is larger. Therefore, the result verifies that the posi-
tioning error map can predict the positioning error of each 
receiver. In the case of Receiver 1, the predicted error is 
less than 5 m, which will be classified as a healthy receiver 

Fig. 7  Demonstration of the complementary positioning error distri-
butions of SDM and Method 1 of the proposed 3DMA GNSS-based 
collaborative positioning algorithm. The upper panel shows the posi-
tioning distributions based on real data. The lower picture demon-
strates the idea of the complementary characteristics
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for collaborative positioning. For the other receivers, the 
predicted positioning errors are larger than 5 m and clas-
sified as degraded receivers. The degraded receivers may 
suffer multipath or NLOS reception, requiring the aids of 
collaborative positioning.

Positioning performance of the static test

The performance of the proposed collaborative position-
ing algorithm will be compared with the following five 
approaches:

(1) LS: Conventional least-squares positioning algorithm

(2) SDM: Shadow matching, an innovative 3DMA GNSS 
positioning method.

(3) CP-DD2CC: Collaborative positioning based on dou-
ble-layer consistency check.

(4) CP-Method 1: The proposed anchor-based 3DMA 
GNSS collaborative positioning.

(5) CP-Method 2: The proposed complementary integra-
tion-based 3DMA GNSS collaborative positioning.

For Receiver 5, the positioning solutions of LS, SDM, 
CP-DD2CC, CP-Method 1 and CP-Method 2 compared to its 
true location are shown on the Google Earth map in Fig. 10. 
The positioning errors per epoch of the different approaches 
are shown in Fig. 11. The mean and standard deviation of 
the positioning error for each degraded receiver (Receivers 
2, 3, 4 and 5) are shown in Table 2.

Focusing on the case of Receiver 5, the estimated posi-
tions of the conventional LS have significantly drifted from 
the true location, showing a 26.6 m mean error. Since the 
NLOS to LOS measurements ratio is large, the consistency 
check algorithm may suffer from the fake consistency issue. 
The healthy measurements may be mistakenly excluded and 
further increase the mean error of collaborative position-
ing algorithm to 36.3 m with 41.2 m in STD. Aided by the 
3D building model, the SDM avoids using the multipath/
NLOS affected pseudorange measurements and improves 
the positioning error to 19.3 m in the mean. However, the 
positioning error is still large because the NLOS cannot be 
all correctly classified based on the C/N0. The proposed 
algorithm first excludes the NLOS measurements based 
on the satellite visibility from SDM. Then, the classified 
healthy receiver further collaborates with degraded receiv-
ers by double-differencing their pseudorange measurements 
with double-layer consistency check. Hence, the multipath 
effect and NLOS reception can be largely mitigated, con-
tributing a more accurate result with 17.9 m in mean and 
12.1 m in STD (Method 1). Based on the complementary 
error distribution illustrated in Fig. 10, the CP-Method 1 
solution can be further integrated with degraded receiver’s 
SDM solution as Method 2. The proposed CP-Method 2 can 
mitigate the enormous positioning error of shadow matching 
or CP-Method 1 seen in Fig. 11, thus contributing a more 
stable and accurate positioning solution with 15.3 m mean 
error and 8.9 m in STD.

For Receivers 3 and 4 located at an environment in which 
half of the sky is blocked by buildings, the shadow match-
ing technique is effective and outperforms the CP-Method 
1, since it mitigates the positioning error from pseudorange 
measurements. The proposed CP-Method 2 further employs 
the solution of Method 1 to compensate for the position-
ing error in the direction in which shadow matching is inef-
fective, obtaining a better positioning result. Noticed that 
Receiver 3 is near a bridge that is not modeled in the 3D 

Fig. 8  Receiver locations of the static experiment (top) and dynamic 
experiment (bottom) in the urban area for the proposed 3DMA col-
laborative positioning algorithm
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building model, causing the proposed algorithm to achieve 
limited improvements. Receiver 2 in the open-sky situation 
is inappropriately classified as a degraded receiver due to 
the prediction error. However, the proposed algorithm is still 
able to maintain its positioning performance of 3.3 m in the 
mean with 1.9 m in STD. After all, the proposed 3DMA 
GNSS collaborative positioning algorithm can improve the 
positioning performance of the receivers in an urban area as 
well as maintaining the performance of the ones in open-
reception areas.

Positioning performance of the dynamic test

Based on the proposed receiver performance classification 
method, Receiver 1 and Receiver 2 are classified as healthy 
receivers with predicted positioning errors of about 0.1 m 
and 1.5 m. Receivers 3, 4 and 5 are classified as degraded 
receivers with 35.6, 33.6 and 17.0 m predicted positioning 
error, respectively. Therefore, we proposed to collaborate 
the measurements from Receiver 1 (healthy) with Receiv-
ers 3, 4 and 5 to improving the accuracy of each of these 
degraded receivers. The positioning solutions of the pro-
posed and conventional SPP methods for each degraded 
receiver are shown in Fig. 12 and with mean and STD given 
in Table 3. Both Methods 1 and 2 can achieve a mean posi-
tioning error of less than half the conventional LS method 
and significantly improve the accuracy compared to SDM 
and CP-DD2CC solutions. For Receiver 5, Method 2 makes 
use of the complementary behavior of Method 1 and SDM 
to further reduce the positioning error to 14.4 m, which is 
twice as good as the LS method. However, the proposed 
Method 2 does not achieve better performance for Receiver 

Fig. 9  Predicted position-
ing error obtained from the 
positioning error map and real 
positioning error based on least-
squares estimation for different 
receivers. LS stands for least 
square estimation and PE Map 
Prediction stands for predicted 
positioning error map

Table 1  Mean positioning error (m) and class of each receiver 
obtained from the least-squares estimation (LS) and predicted posi-
tioning error map (PEM)

Receiver 1 2 3 4 5

LS (m) 4.3 3.1 16.9 8.7 26.6
PEM (m) 2.6 7.0 11.5 9.7 25.8
Class Healthy Degraded Degraded Degraded Degraded

Fig. 10  Positioning solution of LS, SDM, CP-DD2CC, CP-Method 1 
and CP-Method 2 for Receiver 5
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3 and Receiver 4. This is because the SDM performance is 
not satisfactory, whereas the SDM-based NLOS classifica-
tion is very accurate. Most of the NLOS measurements are 

correctly excluded, resulting in an accurate Method 1 solu-
tion. Since the SDM is performing much worse with regard 
to Method 1, the positioning accuracy of Method 2 using 

Fig. 11  Positioning error 
distributions of LS, SDM, 
CP-DD2CC, CP-Method 1 and 
CP-Method 2 for Receiver 5

Table 2  Mean positioning error 
and standard deviation of the 
classified degraded receivers 
by LS, SDM, CP-DD2CC, 
CP-Method 1 and CP-Method 2

Receiver Method LS SDM CP-DD2CC CP-Method 1 CP-Method 2

2 Mean (m) 3.1 3.6 10.4 4.2 3.3
STD (m) 2.4 2.8 43.3 2.5 1.9

3 Mean (m) 16.9 12.7 21.8 18.2 12.5
STD (m) 7.0 7.1 65.7 14.4 7.7

4 Mean (m) 8.7 8.3 13.2 10.8 6.8
STD (m) 7.7 4.0 23.8 8.8 4.7

5 Mean (m) 26.6 19.3 36.3 17.9 15.3
STD (m) 12.4 15.7 41.2 12.1 8.9

Fig. 12  Positioning solutions 
of LS, SDM, CP-DD2CC, 
CP-Method 1, CP-Method 2 
regarding and true receiver 
location (Truth) for Receiver 3 
in the middle between buildings 
(left), Receiver 4 closed to the 
building (middle) and Receiver 
5 on a narrow street closed to 
buildings (right)

Table 3  Mean positioning error 
and standard deviation of the 
classified degraded receivers 
by LS, SDM, CP-DD2CC, 
CP-Method 1 and CP-Method 2 
in a dynamic test

Receiver Method LS SDM CP-DD2CC CP-Method 1 CP-Method 2

3 Mean (m) 11.4 10.3 8.1 3.0 5.4
STD (m) 9.3 5.8 7.1 1.7 3.3

4 Mean (m) 21.7 17.8 15.0 5.6 10.6
STD (m) 13.1 6.1 14.5 6.1 4.5

5 Mean (m) 46.2 16.7 49.8 19.0 14.4
STD (m) 5.1 5.4 11.3 19.9 10.2
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equal averaging may be degraded by the SDM solution. As 
a result, an improvement from complementarily integrating 
SDM and Method 1 may not occur when the two methods 
perform at very different accuracy.

Conclusions

In this study, a new 3DMA GNSS collaborative positioning 
algorithm is developed. By estimating the satellite visibility 
based on SDM, the NLOS measurements in dense urban 
area are correctly distinguished and excluded. Based on the 
predicted GNSS positioning error map, the healthy receiver 
can be identified and then used to collaborate with degraded 
receivers. The DD method with double-layer consistency 
check is employed during the relative positioning, which 
further mitigates the multipath effect and NLOS reception. 
The proposed collaborative positioning uses the measure-
ments of the healthy receiver to aid positioning of degraded 
receivers and further integrates with the complementary 
SDM solution, achieving better positioning performance in 
dense urban areas.

The collaborative process of the proposed algorithm is 
simply based on equal weighted averaging. A more effec-
tive and suitable optimization approach such as factor-graph 
optimization is worth to be studied to improve the integra-
tion performance.
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